

Efficiencies and Characterization of Hexagonal Scintillator Detector

Dr. Mohamed Salem Badawi

Director of Academic Scientific Programs Professor of Radiation Physics and Protection Expert in Radiation Protection Faculty of Science Alamein International University New Alamein City ,Egypt E-mail: ms241178@hotmail.com msalem@aiu.edu.eg

TANGRA – TAgged Neutrons & Gamma RAys

 $d + {}^{3}H \rightarrow {}^{4}He (3.5MeV) + n (14.1MeV)$

Ayman Hamzawy¹, Mohamed. S. Badawi^{2,3,*}, Ivan. N. Ruskov^{4,5}, Dimitar. N. Grozdanov^{4,5}, Mohamed. I. Badawi⁶, Abouzeid. A. Thabet⁶, Yuri. N. Kopatch⁴, N. A. Fedorov⁴, Bohaysa. A. Salem⁷, and TANGRA Collaboration

 ¹Physics Department, Al-Jamoum University College, Umm Al-Qura University, Al-Jamoum, Saudi Arabia.
²Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
³Faculty of Science, Alamein International University, Alamein City, Matrouh Governorate, Egypt.
⁴Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 6, Joliot-Curie Str., 141980 Dubna, Russian Federation.
⁵Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72, Tsarigradsko shose blvd., 1784 Sofia, Bulgaria.
⁶Department of Biomedical Equipment Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Egypt.
⁷Basic Science Department, Faculty of Physical Therapy, Alexandria Pharos University, Alexandria, Egypt.

Objective

RESEARCH

■ Most scintillation gamma-ray detectors can be employed to build bulky array detectors with largescale light output.

□ The degree of gamma-ray detector performance "efficiency" and depending on the crystal geometry and its surfaces that deal with the radioactive source positions.

• "energy resolution" in good shape by allowing the maximum number of photons to be recorded within the actual real volume of the detector itself.

□ The scintillation hexagonal detector design efficiency and resolution are investigated to improve the detector response function to gamma-ray radiation, based on the source position related to the detector surface, which is considered all the time as an essential element in the characterization and optimization of scintillation detectors.

□ This study gives an exceptional about the energy resolution manners and build a good idea about the measurement setup geometrical based on the source position, the geometric solid angle improves the efficiency of the hexagonal scintillation crystal.

The energy resolution of the detector

 $R_i(E_{\gamma}) = \frac{FWHM_i}{E_{\gamma}}.100\%$

Results & Discussion

Geometric efficiency of the detector $\epsilon_{G(Hex)}$ depends on the position and distance of the source.

Geometrical Efficiency										
Distance		STITE AND								
(cm)	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆				
5	7.12E-02	1.25E-01	6.81E-02	4.17E-02	8.85E-02	9.97E-02				
10	4.12E-02	6.23E-02	3.99E-02	2.46E-02	3.25E-02	3.43E-02				
15	2.67E-02	3.59E-02	2.60E-02	1.51E-02	1.61E-02	1.66E-02				
20	1.85E-02	2.30E-02	1.81E-02	9.82E-03	9.51E-03	9.69E-03				
25	1.35E-02	1.59E-02	1.32E-02	6.78E-03	6.24E-03	6.32E-03				

Measured reference fullenergy peak efficiency $\epsilon_{P(Hex)}$ as a function of photon energy for axial position P6 and distance 25 cm.

ALAMEIN

NTERNATIONAL UNIVERSI

0.030

0.025

0.020

0.015

0.010

0.005

0.000

500

1000

1500

Photon Energy (k eV)

2000

Pull Buergy Peak Efficiency

Results & Discussion

Comparison of measured full-energy peak efficiency $\varepsilon_{P(Hex)}$ with calculated values as function of photon energy for all positions and distances.

0.00

500

1000

1500

Photon Energy (k eV)

2 0 0 0

2 5 0 0

300.0

2 500

3000

2500

30 00

0.0

500

Results & Discussion

The energy resolution R% of the hexagonal NaI(TI) detector and the average path length values $\overline{d}(Hex)$ for all positions and distances.

Resolution R% of Hexagonal NaI(Tl) Detector										
Distance	Position ¹³⁷ Cs (661.66 keV)									
(cm)	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆				
5	9.34	9.47	9.14	8.12	7.69	7.70				
10	9.08	9.75	9.41	7.99	7.73	7.82				
15	9.00	9.77	9.45	7.97	7.76	7.76				
20	8.92	9.72	9.58	7.91	7.81	7.81				
25	8.84	9.74	9.60	7.90	7.83	7.79				
Distance	Average Path Length Value d _(Hex)									
(cm)	P ₁	P ₂	P ₃	P ₄	P ₅	P ₆				
5	6.77	5.57	6.82	7.01	5.86	5.44				
10	6.41	5.43	6.47	7.50	7.62	7.38				
15	6.23	5.49	6.30	8.23	9.17	9.01				
20	6.15	5.59	6.22	9.04	10.40	10.29				
25	6.11	5.67	6.19	10.30	11.39	11.32				

Conclusions

□ The solid angle, efficiency and resolution of a hexagonal scintillation gamma detector NaI(TI) were changed when the position of a standard point radioactive source changes from the side of the detector to its front side.

□ The average path length inside the detector crystal depending on source position.

Measured and calculated detector efficiencies have been found to agree fairly well with each other.

□ The data obtained showed that hexagonal NaI(Tl) detectors, which have a fast response, high gamma-ray detection efficiency and moderate energy resolution.

□ The detectors can be successfully arranged as an array to create relatively inexpensive multi-detector gamma spectrometric systems of various geometries.

□ The results of the current study of energy resolution and efficiency for various gamma-ray source-detector configurations can be useful in the development of scintillation detectors of various shapes

Thank you for your attention !

Dr. Mohamed Salem Badawi

Director of Academic Scientific Programs Professor of Radiation Physics and Protection Expert in Radiation Protection Faculty of Science Alamein International University New Alamein City ,Egypt E-mail: ms241178@hotmail.com msalem@aiu.edu.eg

